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Reciprocity Relations in Waveguide Junctions
Dylan F. Williams and Roger B. Marks

Abstract— The Lorentz reciprocity condition is applied to
junctions composed of reciprocal media which connect uniform

but otherwise arbitrary waveguides. An expression relating the
forward and reverse transmission coefficients is derived and

factored into two terms: the first involving the phase of the ref-

erence impedance in the guide, and the second a new reciprocity
factor. The usual condition eqnating the forward and reverse

transmission coefficients is shown not to hold in the general

case. Experimental evidence supporting the theoretical results is
presented.

I. INTRODUCTION

I N this work we consider the conditions relating the scatter-

ing parameters of reciprocal waveguide junctions, that is,

junctions containing only linear materials with symmetric per-

mittivity and permeability tensors. The junctions are assumed

to be connected to uniform waveguides in which only a single

mode of propagation is significantly excited.

If the waveguides are lossless, the forward and reverse trans-

mission coefficients of a reciprocal junction may be equated

as a result of the Lorentz reciprocity theorem [1]. This well-

known condition is especially useful when only the product

of the forward and reverse transmission coefficients can be

directly measured, as is the case in certain de-embedding

algorithms [2].

With the increasing use of planar transmission lines and

integrated circuits, junctions between waveguides supporting

lossy hybrid modes have become common. Microwave wafer

probes, which interconnect coaxial and coplanar lines, typify

such junctions, In these instances, the usual microwave circuit

theories (e.g., [1]) fail. This opens the possibility that the

forward and reverse transmission coefficients of the junction

may be unequal.

This work applies the Lorentz reciprocity theorem to de-

termine the relationship between the forward and reverse

transmission coefficients of an arbitrary reciprocal junction.

The derivation is based upon a general circuit theory [3] which

applies to lossy hybrid modes such as those found in coplanar

waveguide (CPW) or microstrip lines. The relationship is

shown to involve two terms: one dependent on the phase angle

of the reference impedance in the guide, and the other on a

new term, which we call the reciprocity y factor. For illustration,

we calculate these terms for several guides. We also present

experimental measurements, which are consistent with the

theory, of the ratio of the forward and reverse transmission
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coefficients of a microwave probe. Some of these results have

been presented in [4].

II. SCattering PARAMETERS

Scattering parameters, which include the transmission co-

efficients of interest here, are conventionally defined to relate

the waves in the various waveguides attached to a junction.

However, many definitions of these waves are in common

use. Here we take a very general approach, making use of the

pseudowaves defined in [3]. These quantities are defined much

like ordinary traveling waves, which depend exponentially

on the axial coordinate. However, the definition makes use

of an arbitrary reference impedance. When this reference

impedance is equal to the characteristic impedance of the

waveguide, the pseudowaves reduce to the traveling vmves.

Otherwise, the pseudowaves are simply traveling waves that

have been subjected to an impedance transform. This defini-

tion accommodates practical situations that demand the use

of a particular reference impedance. Commercial microwave

design tools restricted to the use of real reference impedances

provide one example. The definition is also closely connected

to the measurement process, in which the reference impedance

is determined by the calibration rather than simply defined in

an abstract sense.

Consider a two-port junction connected to two dissimilar

uniform semiinfinite waveguides. In each waveguide, a ref-

erence plane is chosen far enough from the junction that

higher-order modes are insignificant. Following the general

treatment of [3], which includes lossy lines, the characteristic

impedance of the mode may be defined from the modal

transverse electric field en and magnetic field h~ of the

forward propagating mode by

ZO. A(
P:n

(1)

where

is the complex power carried across the surface o-n, coincident

with the reference plane in the nth guide (see Fig. 1), by the

normalized forward mode. The constant vOn is defined by

Von 5 —
/

en . dl , (3)
pat h

and ii is the unit vector normal to on directed into the

junction. The integration path in (3) lies -in on and a time
dependence e@t is assumed. The phase of Zo% is independent
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Fig. 1. A general two-port junction. The surfaces al and 02 are coincident

with the two waveguide ports of the junction. The surface m. in this case is

a cylinder, which may extend to infinity. The surface O. + al + az encloses

the entire junction.

of the normalization imposed by the choice of integration path.

Although ZOn is real in lossless lines, it is, in general, complex.

We next define the waveguide voltage Va and current in in

terms of the total transverse electric and magnetic fields Ein

and Hin in the guide

/where ion E vOn ZOn.

We then define the pseudowave amplitudes [3] as linear

combinations of Vn and in:

and

Each waveguide’s reference impedance Z.n is arbitrary except

for restriction Re(Zrn ) > 0 [3]. The normalization used in

(5) and (6) is chosen to meet three criteria. The magnitude

enforces a power normalization of the pseudowaves. The phase

simplifies the reciprocity relations determined below. And,

finally, when Z.m is chosen to equal ZOn, the pseduowaves

reduce to the traveling waves, which depend exponentially on

the axial coordinate.

The net flow of power across the nth port may be written

in terms of the pseudowave amplitudes as

Pn s Re I Etn x H& . ndS = Re(vni~) = lanlz – lbm12

Im(Zrm)
+ 2 Im(a~bi)

Re(Z,n) “
(7)

Notice that, because of the cross term an b:, the power is

not simply the difference of the powers that would be carried

by the forward and backward pseudowaves acting alone. The

cross term, however, vanishes when Zrm is real

The pseudoscattering parameters S’mm of a junction are

defined in terms of the pseudowave amplitudes at each port

in the conventional way as

bm = ~ Smnan (8)
n

where the sum extends over all of the ports. Although not

denoted explicitly in (8), the pseudoscattering parameters are

functions of the reference impedances Z.n. For the special case

when Zrn = ZOn at each port, the pseudoscattering parameters

reduce to the conventional S-parameters, defined by

bm(ZOm) = ~ S~nan(ZOn) . (9)

n

Because the traveling waves an(ZOn) and bn(Zon) are

the physical waves that propagate in the line, the S~n are

directly measurable with slotted line techniques or with a

vector network analyzer calibrated with the thru-reflect-line

(TRL) technique [3]. The pseudowave S-parameters of (8) are

simply an impedance-transformed form of the S~n.

The pseudowaves defined by (5) and (6) should not be

confused with the power waves defined by Kurokawa [5].

The power waves are not related to the traveling waves by an

impedance transform [3]. They also do not correspond to the S-

parameters determined by any conventional network analyzer

calibration method,

III. RECIPROCAL JUNCTIONS

The fields at each port of a waveguide junction may be

written as a superposition of the modal electric and magnetic

fields. For a two-port junction, it is always possible to find

sources J1 and J2 placed outside the junction so that

ii x Et(J1) /m,= O

and

n X &(J2) Iml= O

where Et ( Jn ) is the field due to sources

(11) are equivalent to

(lo)

(11)

Jn. Now, (10) and

a2(Jl) + b2(J1) = al(J2) + bl(J2) = O (12)

where the arguments Jn again indicate the source. If the

junction is reciprocal, the Lorentz reciprocity condition [1]

gives

! (Et(J,) x H,(Jz) - Et(J2) x Ht(J~))
ml +’72 +Uo

.iidS=O (13)

where the surface al + IS2+ O. encloses the entire junction,

as shown in Fig. 1, and n is the unit normal pointing into

the junction. If the fields are zero on Oo, or if O. is a

perfectly conducting surface, is characterized by a scalar

surface impedance, or is infinitely far away, the integral
vanishes there [1]. Conditions (10) and (11) may be further

used to simplify (13), which reduces to

/
Et(J1) X Ht(J2) .ndS = J Et(J2) X Ht(J1) . ndS.

ml f72

(14)
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Using (4), (5), and (6), Et and Ht maybe expressed in terms

of the pseudowave amplitudes. Using these expressions in (14)

results in

[al(J,) + bI(JI)][aI(J2)- bI(J2)]KI ~e~jrl)

= [az(!l,) + b2(J2)][f’Z2(Jl) - b2(Jl)lK2Re& (15)

where the reciprocity factor Kn is defined as

KnE&
/

Tonenxhn. ndS=T.
lGn12 U?l

(16)
Pon

Here

pon = J enxhm.tidS. (17)
0.

While (15) relates the pseudowave amplittides at ‘the two

ports only for the sources J1 and Jz, it actually forces some

conditions on the S-parameters, as we will now show. First,

the bm of (15) can be replaced by expressions involving only

the an and the S-parameters using (8) and (12) with the result

Z;l
al(J4[al(Jl)(l + Sll) + s@2(Jl)]Kl

Re(Zrl)

Z;2
= a2(J1)[a2(J2)(l + S22) + S21a1(J.2)]Kz

Re(ZT2)
(18)

Next, the reflection coefficients can be eliminated from the

bracketed expressions in (18) with the relations (1 + Smm) =

–Smnan (Jn)/am (Jn) for n # m derived from (8) and

(12). The transmission parameters factor out of the resultant

expressions leaving identical terms involving the am on both

sides of the equation. This results in an expression that relates

only the transmission parameters

Z;l Z;2
S12K1

Re(Zrl)
= SZUKZ

Re(Zrz) “
(19)

Equation (19) is easily extended to multiport junctions by

terminating all but the rnth and nth ports in perfect matches,

and including those terminations within the sutiace O.. The

result is

s nm Km 1 – j Im(ZTm)/Re(Zr~)

— = K. 1 – j Im(Zrn)/Re(Z~~) “s
(20)

mn

Another proof of this generalized result is given in [3].

For the conventional S matrix relating the traveling wave

amplitudes, Z.. = Z.m and (20) becomes

S:m _ Km 1 – j Im(Zo~)/Re(Z~~)—_ —
s~n Km 1 – j Im(ZOn)/Re(ZOn)

(21)

The corresponding condition on the impedance parameters

z nm 7 defined by Vm = En Zm.i., is [3]

z nm Km VonV;m

z = Kn V&Vom “
(22)

mn

Equations (20), (21), and (22) all involve the reciprocity

factors Kn for each guide. While the phase of Kn depends

directly on the normalization of en and hn, its magnitude is

unique, independent of the choice of voltage path in (3) and

of the choice of normalization of en and hm. The phase of the

characteristic impedance is also independent of these normali-

zations. Thus, the quantities ISan/S&I and IZnm/Zmn I are

unique and independent of normalization ?s well. Note that the

Znm are defined directly in terms of the waveguide voltages

and currents and are independent of the wave definitions and

normalizations. Thus, the appearance of the reciprocity factor

in (22) most clearly’ illustrates the fundamental difference

between these and previously reported results.

IV. PARTIALLY FILLED WAVEGUIDE

If the phase’ of the electric field is constant across a

waveguide, then the magnitude of the reciprocity factor K for

that guide must be 1. Otherwise, such as when the waveguide

is partially filled with a lossy’ dielectric, K may differ from 1.

We calculated the magnitude of the reciprocity factor of

the dominant mode of a rectangular waveguide partially filled

with a lossy dielectric following Barrington [6] and plotted the

reciprocity factor in Fig. 2. The continuity of the normal com-

ponent of the electric displacement across the air–dielectric

boundary forces the electric field to change phase across that

boundary, This results in a complex reciprocity factor with

magnitude less than 1, as illustrated in Fig. 2. For a junction

connecting this waveguide to a hollow rectangular waveguide

of the same dimensions, application of (20) and (22) shows

that the impedance matrix is asymmetric and that even when

all reference impedances are chosen to be real, the forward

and reverse transmission coefficients are unequal.

V. COXIAL LINES

The phases of the electric and magnetic fields are nearly

constant over the cross section of many common guides.

Coaxial lines, hollow rectangular and circular waveguide, and,

to a lesser extent, quasi-TEM lines are examples. We expect

Partially filled waveguide

0.8 -

0.8 -

01 I
1.0 1.2 1.4 1.6 1.8 2.0

flf
c

Fig. 2. The magnitudeof the reciprocity factor for the dominantmodein a
waveguidepartially filled with a lossydielectric.The frequencyk normalized
to the cutoff frequencyof the mode k the empty guide.
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Fig. 3. Im(ZO )/ Re(ZO), equal to the tangent of the phaseof 2., for a
2.4 mm coaxial line. The center conductor has a diameter of 1.042 mm and

metal resistivity of 22 pQ cm. The plotted values were calculated using
the results of Daywitt [7].

the magnitude of the reciprocity factor to be nearly 1 in these

guides.

We investigated the reciprocity factor of 2.4 mm coaxial air

lines using the calculation technique of Daywitt [7], which

rigmously includes the penetration of fields into lossy metal

conductors. The phases of the electric and magnetic fields are

nearly constant, and the magnitude of K is nearly 1 at low

frequencies. Even at 50 GHz, which is near the frequency at

which higher-order modes begin to propagate, the magnitude

of K deviates from 1 by less than 3 x 10– 10. Thus, in

coaxial lines, the impedance matrix is nearly symmetric and

the phase of the reference or characteristic impedance is the

only significant factor in (20) and (21).

Reference [8] noted that the characteristic impedance of

coaxial air lines varies greatly at low frequencies where, in

the limit, the phase angle of 20 approaches –45°. Thus, the

contribution of the phase of 20 in (21) cannot be ignored at

low frequencies. This is illustrated in Fig. 3.

VI. THE EXPERIMENTAL DETERMINATION OF 1S21/S12 I

The magnitudes of S~l and S~z of a waveguide junction
may, in principle, be determined directly from microwave

power measurements. The procedure begins with the measure-

ment of the power transferred from a source into a power

meter, both of which are reflectionless with respect to the

traveling waves in the waveguide of port 1 of the junction.

Then port 1 of the junction is connected to the source, and

port 2 to a second pQwer meter which is reflectionless with

respect to the traveling waves in the waveguide of ort 2 of
!

the junction. The ratio of the two powers is lS~l I . lS~z 12

may also be measured by reversing the experiment, The

quotient IS~l /S~z I then tests the reciprocity condition. If

the experiment is performed on a rejlectionless junction, and

If% I # ls~~ 1, the difference in the measured power ratios is
entirely due to the preferential abosrption of power traveling

in one of the two directions within the junction. If, instead, the

sources and power meters in the experiment are reflectionless

with respect to pseudowaves in the two waveguides, the ratio

lSzl/Slz I is determined.

In [9] we reported a similar experiment for a junction

connecting a 2.4 mm coaxial line and a coplanar waveguide

(CPW) line. The waveguide junction was a microwave probe,

and power from a microwave power source was transferred

through it to a thermistor bead mounted in a short section of

CPW.

In the experiment reported in [9], the product S~l S~z was

determined by the two-tier TRL de-embedding technique,

allowing the ratio IS;l /S~z I to be determined without a

reverse power measurement. Furthermore, neither the micro-

wave source nor the thermistor bead was reflectionless. To take

that into account, the transducer efficiency q of the microwave

probe and the short section of CPW line that it contacted,

given by

(23)

was measured. Here PA is the power available from the

source, and PL is the power delivered to the load. The

transducer efficiency ~ is the equivalent of the transducer

power gain described in [10], or the inverse of the transducer

loss described in [11]. In the experiment, PA was determined

by first connecting the source to a calibrated coaxial sensor

head and measuring the power dissipated in the sensor head.

Then the reflection coefficients of the source and sensor head

were measured, and P.4 calculated form the data. PL was

determined by a dc substitution technique.
The transducer efficiency of the probe (including the short

section of CPW line) is related to its pseudoscattering param-

eters by (24) shown below [9] where F.s and 17~ are the

IS,112(1- Ir.s[’)(1- lr~l’ -2 Im(I’~) Im(Z.z)/Re(Z.z))
~=

I(I - sllr~)(l - s,2rL) - s,ls1,r~r~12 ‘
(24)

S’21 ql(l – sllrS)(l – s22rL) – s21s12rSrL/2

S12 =
1s21s12/ (1 - pS12) (1 - lrLf -2 Im(I’~) Im(Zrz)/Re(Zrz))

(25)
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Fig. 4. Measurements of IS~l /S~2 I and 1S21/S12 I (with 2,2 real) based
on (25) compared to the values calculated from (20) and (21) under the
assumption IK1 I = IK2 I = 1. The calculated and measured results agree
closely, and IS,j’l / Sf2 I deviates significantly from unity, especially at the
low frequencies. At very low frequencies, the prediction from (21) approaches

I/w because the phase angles of 202 approaches –45° [8].

reflection coefficients of the microwave source and thermistor

bead, respectively, and Z.z is the reference impedance at the

CPW port. Rearrangement of (24) then allows us to write

lS21/Slzl strictly in terms of measured quantities (25).

In the squares of Fig. 4, we have plotted IS;I /S;z 1, as

determined from (25). In the experiment, S~l, S~2, and S$l Sf2,
the scattering parameters of the intervening probe and line,

were measured using the two-tier multiline TRL de-embedding

technique [12]. The characteristic impedance ZOZ of the CPW

was determined from its propagation constant using the tech-

nique of [8]. The agreement is good, and IS.$l /S~z I deviates

significantly from 1, especially at the low frequencies. At very

low frequencies, the prediction form (21) approaches l/~

because the phase angle of Z02 approaches –45° [8].

For comparison, we have also plotted 1S21/S121, represented

by circles in the figure, for the case when the calibration

reference impedance at the CPW port is set real. The measured

data plotted in Fig. 4 are compared to the predictions of (20)

and (21) under the assumption that IK1 I = Illz I = 1 (see

dashed and

quite good.

We have

and reverse

solid lines in Fig. 4). Again, the agreement is

VII. CONCLUSIONS

derived a general condition relating the for&ard

transmission coefficients of a reciprocal junction

connected to uniform but otherwise arbitrary waveguides. The

condition differs from the usual relation equating the two

transmission coefficients in that it involves a reciprocity factor

and the phase angle of the reference impedance in each guide

connected to the junction.
In lossless TEM, TE, and TM guides, the characteristic

impedance is real and the reciprocity factor can be chosen to be

1 (see the Appendix). If this is done, the usual relation equating

the actual forward and reverse transmission coefficients holds.

Some other less common conditions for which this is true are

discussed in the Appendix.

In coaxial lines constructed with typically lossy metals,

the magnitude of the reciprocity factor is nearly 1, and its

deviation from unity can be safely neglected. The phase of

the characteristic impedance, however, must be considered at

low frequencies. The simplest method of properly accounting

for the phase of the characteristic impedance is to use the

pseudowaves with a real reference impedance, rather than the

traveling waves, in the formulation. Then the forward and

reverse transmission parameters of a reciprocal junction are

nearly equal.

Our experiments indicate that the reciprocity factor can

also be safely neglected in coplanar lines. The experimental

evidence showed that at low frequencies, the effects of the

complex characteristic impedance, however, are large even at

moderately higher frequencies and cannot be neglected.

We also presented an example of a rectangular waveguide

partially loaded with a lossy dielectric that showed that the

magnitude of the reciprocity factor may deviate significantly

from 1. Thus, in some circumstances, both the phase of the

characteristic impedance and the magnitude of the reciprocity

factor must be considered to determine the relation between

the forward and reverse transmission parameters of a recip-

rocal junction. In this case, even the impedance matrix is

asymmetric.

APPENDIX I

COMMON CONDITIONS FOR WHICH IIYn I = 1

The phases of the transverse electric and magnetic fields in

Iossless guides are constant and equal over the guide cross

section. Thus, the characteristic impedance is real and the

magnitude of the reciprocity factor is 1 in lossless guides. If,

as is conventional, en and hn are chosen to be real, Km = 1.

It is possible to write the reciprocity factor as

where yn is the propagation constant of the nth mode. Thus,

if the mode is TM (h.. = O) and the phase of en is constant,

then (26) implies IKn I = 1.While TEM guides satisfy these

conditions, not all TM guides do. The lossy coaxial lines

studied here, for example, are TM but the magnitude of K~ is

not exactly equal to 1, If the mode is TE (eZn = O), ~ is real,

and

[1]

[2]

[3]

[4]

[5]

the phase of hn k constant, then (27) implies l.K~ I = 1.
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